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An iterative technique for solving the ideal MHD equilibrium equations for a helically sym- 
metric plasma with a free boundary is described. The method involves an application of 
Green’s theorem and has been formulated for the geometry of a heliac. It is used to determine 
a stability diagram for the SHEILA heliac as a function of the plasma pressure and the 
current in one of the external coils. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Recently there has been considerable progress in the computation of three-dimen- 
sional magnetohydrodynamic equilibria with a free boundary [ 1,2]. In spite of 
this, two-dimensional equilibrium and stability codes continue to be important 
approximate tools for the analysis of 3D (stellarator) plasma configurations [3]. In 
the limit of large aspect ratio, or large number of helical periods, stellators of the 
heliac type are particularly well approximated as being helically symmetric. Some of 
the recent interest in this sort of configuration has been inspired by the high (p) 
limits predicted by some helically symmetric fixed-boundary-equilibrium and 
stability studies [4-61. 

In this paper we present an iterative method for solving the free-boundary 
helically symmetric, ideal equilibrium equations. The algorithm involves an 
application of Green’s theorem to a model geometry which we take as being that of 
a generic heliac. The Iixed-boundary flux coordinate version of the PEST equilibrium 
code, FEQ2.5 [7], has been modified to incorporate this algorithm. In Section 2 we 
describe the free-boundary equilibrium equations in some detail. The Green’s 
function for the helical Grad-Shafranov equation is introduced in Section 3 and the 
new code, ~5~2.5 (FR), is described in Section 4. In Section 5 the code is used, along 
with other codes in the PEST series, to model the free-boundary equilibrium and 
stability of the SHEILA heliac [8]. 
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2. GREEN'S THEOREM FOR THE MODEL HELIAC 

Consider the I= 1, helically symmetric plasma and external coil configuration 
shown in Fig. 1. A straight conductor carrying a current I defines the z-axis of a 
cylindrical coordinate system (r, 4, z). It is completely enclosed by a solenoid, ?/, 
which need not be circular in cross section, carrying a surface current i. The plasma, 
region C, has a net longitudinal current, I,, which we shall assume for the moment 
to be zero, and a surface current i, . There may also be some helical line currents in 
region B as will be discussed later. 

All scalar equilibrium quantities are functions of r and [ = $ - hz only, where the 
constant h gives the helical pitch of the configuration. Any helically symmetric 
magnetic field can be written [7] 

B=huxVI//+hgu, (1) 

where u z (e, + hre,)/( 1 + h2r2) and the stream function $(r, [) is such that the dif- 
ference, 2441//), between II/ on two helical lines (each of constant r and ?,‘) is equal 
to the flux through the helical ribbon which is defined by those lines and is of 
length 2x/h in the z direction. Similarly, 27c dg/p,, is equal to the current through 
such a helical ribbon. Note that g(r, [), unlike $(r, [), does not contain an arbitrary 
constant. Its value at infinity is proportional to the total longitudinal current: 

27cg, = p(J;. (2) 

(To show this, take the line integral of B along one twist of the symmetry vector, II, 
at infinity and return along e, and note that B .e, = 0 at infinity.) 

The helically symmetric ideal equilibrium condition 

JxB=Vp (3) 

FIG. 1. Helically symmetric plasma and coil configuration as described in the text. 
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is equivalent to the helical Grad-Shafranov equation 

u(li,)Ev.(Kv+q g(ti) - &$I g’(lcI) - POP’($), (4) 

where K = A’/( 1 + h2r2) is the sum of the squares of the curvature and torsion of a 
helical line of pitch h. Note that the transformation to I> 1 equilibria, which are 
functions of r and [, = 14 - hz only, can be effected by changing the scale of h. 

The equilibrium of Fig. 1 can be specified in terms of $ by solving Eq. (4) inside 
the regions A, B, and C along with the boundary conditions across the plasma sur- 
face, r, and the solenoid, y, and as r -+ 0 and r + co. The helical flux will diverge 
logarithmically at r = 0 (due to the central conductor) and as r + cc (due to the 
total longitudinal current). The jump conditions on the magnetic field across y and 
I- give rise to discontinuities in g and VI+!I. For the plasma surface these are 

and 

(5) 

where ahi $ = eN. V$ denotes the normal derivative of I,$ on ZY In equilibrium i, 
must be compatible with the constraint of pressure balance and r must be a flux 
surface. The (constant) values of g in the vacuum regions may be found from 
Eq. (1). Within region C the g and p’ profiles may be specified in accordance with 
some model of the plasma. If we let + be continuous across y and r then there is 
one undetermined constant in the complete equation set [9]. 

Let G be a helically symmetric Green’s function satisfying 

then Green’s theorem, when applied to 

GY(t,b)-$Y(G)=V.(GJCVII/-@cVG) 

integrated over one period of region C gives 

(roT lo) in C 
(ro, co) outside C. (8) 
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The value of sly $c on Z can be expressed in terms of a,,,, $B using Eq. (6). Green’s 
theorem can then be applied to regions B and A to give an integral expression for 
$(ro, co) for (rO, co) throughout A u Bu C. The volume integral of GLY($) can be 
eliminated by introducing the auxiliary fields $ and ICI,,,, where 5 is the solution to 
the fixed boundary problem (Eq. (4) with 3 I r= 0) in region C and II/,,, is the 
vacuum flux of the external coils. Then z(G) = _Ep($) in region C and ~P(I,+~,,) = 
T($) in regions A and B and $,,, satisfies the same boundary conditions as I,+ as 
r + 0 and r + co. Provided that the solution to the lixed-boundary problem is 
unique, we have 

(ro, L,) in A u B 
(ro, id in C 
(ro, id on r 

(9) 

If there are extra helical currents in region B then their vacuum fluxes must be 
added to I,+,,,, and the values of g adjusted accordingly. A net longitudinal plasma 
current, Zp, can be treated by adding to $,,, any flux function I,& which satisfies 
Ampere’s law on paths enclosing region C. The simplest choices for $ are 4, = 
(poZp/27rh) In r and $* = - (,~,,Z~/27rZr)(h~r~/2), however, because eVac + $ will not 
satisfy the same boundary conditions as $, these will necessitate additional surface 
integrals at r = 0 and as r + 00 in Eq. (9). It turns out that these surface integrals 
can be eliminated by a judicious choice of the Green’s functions G, and G, of the 
next section: if 4, is used then G2 should be chosen and if $2 is used then G, should 
be chosen [9]. 

3. CHOICE OF GREEN'S FUNCTIONS 

Two solutions of the “fundamental” helical Grad-Shafranov equation, Eq. (7), 
are 

G,(r, ilro, id=$ lnr, +:h2r: +g 
> 

and 

(11) 



FREE-BOUNDARY PLASMA EQUILIBRIUM 481 

where 

g(r, 5 I ro, lo) = -4rro f G(nhr c ) Unhr , ) cos[n(i - CO)] (12) 

and r , = max(r, ro), r < = min(r, ro). 
This can be proved by expanding S(c - co) and considering the coefficients of 

COS[~(~-[~)] on either side of Eq. (8) [9, lo]. Each of these Green’s functions 
corresponds to the helical flux due to a current loop. The current, of magnitude 
(47c/p,h), flows in the (-z) direction along the helix (r = rO, c = co), and returns 
along a path at infinity in the case of Gi, and along the z-axis in the case of G2. 
Thus G, is equivalent to the integral expression 

G,(r, 5 I ro, lo) = - (r2 + 6) 

+j$r { 

[ 1 + h2rro cos(q5 -do)] 1 
dzo, 

cc [r-r01 -J[(z-~~)~+a*l 
(13) 

where lr - r,l = {r* - 2rr, cos(# - do) + (z - zo)*}‘~* and the second term under the 
integral, involving the arbitrary constant a, has been added to help it converge. The 
equivalence (to within a constant) of Eqs. (10) and (13) may be demonstrated by 
expanding the first term under the integral. 

4. THE FREE-BOUNDARY EQUILIBRIUM CODE ~n~2.5 (FR) 

It is possible to use either of G1 or G2 in the integral expression of Eq. (9) to 
solve a free-boundary equilibrium. Suppose that the fixed-boundary equations have 
been solved inside a guessed plasma boundary, rold, to give Gold, and that pc = 0 
and g, = g, on r,,,. The pressure will be continuous across r if i, = 0 as well. The 
contours of I,$ from Eq. (9), with the integral taken over r,,, and with i, set to zero 
will thus give a new approximation to the actual flux surfaces. This procedure 
(fixed-boundary solution + Green’s function integration) forms one outer loop of 
an iterative procedure. The algorithm has been described in detail for the toroidal 
case by Delucia et al. [ll]. Our implementation for the helical case uses a version 
of the fixed-boundary flux coordinate code rn~2.5 [7] which solves the equilibrium 
equations on a curvilinear (Y, 0) grid in the top half of the z = 0 plane (assuming 
up-down symmetry). The poloidal angle (0) is calculated to divide each flux 
surface cross section (labelled by the radial coordinate !P) into equal arcs. The new 
free-boundary code, FEQ~.~ (FR), has several improvements on the toroidal case 
which are appropriate for “beany” heliac plasmas: 

l The initial guess for the plasma shape can be taken from the contours of a 
vacuum magnetic field. Alternatively the code can be initialized from the results of 
some other converged equilibrium. 
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l Simple algorithms for specifying the initial flux coordinate grid, such as 
drawing straight lines from a local origin within the plasma to the plasma boun- 
dary, often lead to crowding in 0 for very indented surfaces. This can cause the 
lixed-boundary iterations to become unstable. We counter this by explicitly con- 
touring a few of the interior flux surfaces (typically 4 out of a total of 56), rezoning 
them to equal arcs and using linear interpolation between them. The vacuum 
magnetic field is contoured using an efficient algorithm which assumes that (the 
cylindrical coordinate) 4 is a single-valued function of r over each (half) surface. 

l The bounding surface is defined to be a separatrix or the tangent surface to 
a circular limiter. The latter can be interpreted as limiting the computational region 
to that in which well-formed magnetic surfaces could reasonably be expected in 
three dimensions. 

l The contouring procedure used to find the new plasma boundary involves a 
systematic search of the coordinate grid within region C and its extrapolation into 
region B. However, as an observer point approaches the old boundary, rold, the 
Green’s function terms in Eq. (9) develop integrable singularities. It is (tacitly) 
assumed by Delucia et al. [ll] that the accuracy of their trapezoidal rule 
evaluation of the Green’s function integral is maintained at one radial grid point 
either side of r,,,. This will not be the case for a beany heliac plasma unless the 
number of 0 grid points is very much greater than the number of Y points. Also, 
because of the variation in the physical size of the radial mesh with 0 (see Fig. 2), 
observer points on a given flux surface will feel the effects of the singularities more 
acutely near the center, rather than at the tips, of the bean. Simply increasing the 
number of equilibrium 0 points is a very computationally expensive way of coping 

FIG. 2. Bounding surface for an I,,= 1.8 kA, a=2 equilibrium at (8) =26% (dotted contour) 
superimposed on flux surfaces and poloidal coordinate lines for that configuration in vacuum. The 
circular limiter and central coil positions are also shown. 
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with this problem. In 13~2.5 (FR) the Green’s function integral is evaluated using the 
trapezoidal rule on an interpolated 8 grid (commonly increased from 56 to 276 
points using cubic interpolation). As well as this, its value for observer points in a 
narrow region either side of, and including, Z,,, is estimated by cubic interpolation 
of its values at the edges of this region. There is, therefore, no need to integrate the 
singular parts of the integral explicitly. 

l An efficient series representation is used for II/,,,. This is discussed by 
Dewar and Gardner [12]. 

The accuracy of the free-boundary code has been estimated by computing a 
known vacuum field. For SHEILA equilibria (see below) with a (Y, 0) grid size of 
56 x 56 the code had a maximum error of 1% of the variation of $ across the 
plasma. It is convenient to measure the convergence of the code by monitoring the 
position of, and value of $ at, the magnetic axis (X,,,, and $,,, respectively). The 
convergence of a (fl) = 7 % SHEILA equilibrium to 6 decimal places in X,,,, and 5 
places in IJ,, can reasonably be expected after 7 outer loops. At these sorts of 
pressures, with 56 x 56 grid points, each outer loop takes about 40 min CPU time 
on a FACOM-M360R or 4 min CPU time on a Cyber 205. 

5. FREE-BOUNDARY SHEILA EQUILIBRIA 

The SHEILA heliac has a (planar) central “core” conductor, of 18.75 cm radius, 
about which 24 toroidal field coils are arranged in a 3-period toroidal helix [8]. 
The configuration is completed by a vertical field which may be optimized to 
balance the shape of the flux surfaces at different toroidal angles. When this is the 
case the “average” shape of the flux surfaces may be approximated by a helically 
symmetric model, similar to Fig. 1, which has a circular solenoid of radius 6.5 cm 
and a helical displacement of 2.5 cm from a central line conductor [9]. Plasma is 
expected to be confined by a set of twisting, bean-shaped surfaces with a magnetic 
axis to the right of the central conductor in Fig. 1. 

A recent modification to the bare SHEILA configuration is the addition of an 
extra helical winding on the mid-plane between the central conductor and the 
plasma [13]. Its current, I,,, can be used as a “deformation parameter” to con- 
struct a stability diagram in the manner of Ref. [6]. As IX, increases in the opposite 
direction to the main core current the plasma is pulled towards it. The flux surfaces 
become less indented and elongated and the total (“poloidal”) rotational transform, 
f, decreases (where Z = 1 - (j,,l and Jh is the helical transform [7]). There is a 
separatrix between the helical winding and the magnetic axis. 

Figure 3 is a stability diagram for a helically symmetric model of SHEILA with a 
core current of 16 kA in the -z direction, a solenoidal field of net circulation 
(-)0.2048 T and a helical winding of radius 1.0 cm. The figure is a plot of flux 
surface shape (parametrized by I,,) against (/I) = 2p,(p)/Bk,, where (p) is the 
average plasma pressure and B,, is the magnitude of the magnetic field at the 
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-0.5. 

0 

FIG. 3. Critical (/I) for stability against ideal interchange and ballooning modes for helically 
symmetric, net-current-free SHEILA fixed-boundary (solid lines) and free-boundary (broken lines) 
equilibria. The pressure profiles have the form p cc F. The plasma is stable above the curves and 
unstable below. 

magnetic axis. Note that Z,, increases moving down the vertical axis. The solid lines 
represent the critical (p) for stability of SHEILA equilibria when the plasma boun- 
dary is fixed to the vacuum magnetic surface which is tangential to a fictitious 
circular limiter of radius 3.9 cm (see Section 4). All of the equilibria had zero net 
longitudinal current and pressure profiles of the form p CC ($/$,J. The broad 
M = 1.2 pressure profiles are close to the slope of the measured profiles at very low fl 
C8, 91, whereas a = 2 corresponds to a peakier, bell-shaped pressure dis- 
tribution [6]. The equilibrium code was run with a 56 x 56( Y, 8) grid which was 
interpolated to a 97 x 128 Hamada coordinate grid for the stability analysis. The 
equilibria were examined for Mercier and ballooning stability using the BAL~.~ 
code [7]. None of the equilibria in this parameter space is in the “second stability 
region” to interchange modes [6] so that the stability boundaries against ideal 
Mercier and ideal ballooning modes coincide. 

As the pressure is increased, the magnetic axis shifts away from the central con- 
ductors and the elongation (and total rotational transform) of the innermost flux 
surfaces increases. (At an (/I) of 24% the magnetic axis of an Z,, = 2 kA, c1= 2 
equilibrium had shifted 19% of the distance from the vacuum magnetic axis to the 
boundary). For some values of Z,, in the fixed boundary case there is a transition to 
a Mercier unstable configuration with increasing /I. Above the marginal point at 
zero pressure the magnitude of the specific volume, I”, decreases monotonically 
from the magnetic axis to the separatrix. Thus V” is negative everywhere which is 
equivalent to there being a continuous magnetic well across the plasma [14]. The 
marginal point coincides with the appearance (with increasing I,,) of a magnetic 
hill close to, but not exactly at, the magnetic axis in an equilibrium which otherwise 
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has a net magnetic well. As I,, is increased the hill moves into the magnetic axis but 
there is still a net magnetic well. Close to the marginal point, the transition to 
Mercier instability with increasing fl first takes place close to, but not exactly at, the 
magnetic axis. The stability boundary has a greater dependence on pressure profile 
than that noted by Ref. [6]. 

The critical (/I) for free-boundary SHEILA equilibria are shown as the broken 
lines in Fig. 3. The free-boundary runs were initialized with a vacuum grid and run 
for between 4 and 7 outer loops. As the pressure is increased, with the coil currents 
and limiter position held fixed, the plasma shifts outwards and broadens (Figs. 2 
and 4). We have found that the increase in the helical aspect ratio, though small to 
the eye, is sufficient to stabilize all those fixed-boundary SHEILA configurations for 
which there is a transition to instability at finite pressure. In other words, any zero- 
pressure configuration with a magnetic well everywhere will remain stable as the 
(p) is increased. Note that, as with the fixed boundary case, the shallower pressure 
profile is more stable and the most Mercier-unstable region of the plasma is close to 
the magnetic axis. The stabilizing effect of increasing the helical aspect ratio has 
been predicted by Ref. [6]. 

We have compared our prediction of the shape of the V’ profile near the 
marginal point at zero pressure with the results of a 3D field line tracing code. It 
has been shown that there are configurations near the marginal point of the (fully 
toroidal) SHEILA heliac for which the v’ profile changes from a hill at the 
magnetic axis to a well across some of the intermediate flux surfaces and back to a 
hill at the edge. In the helically symmetric case there must always be an overall 
magnetic well because the closest bounding separatrix (introduced by the extra 
helical winding) has an x point (of radius r,) between the z-axis and the magnetic 

FIG. 4. Midpoint (x), width (AX) and magnetic axis position (X,,) as a function of (j) for 
I,, = 2 kA, a = 2 free-boundary equilibria. 
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axis (radius rma). (The ratio of the specific volumes, v’, of the magnetic axis and 
this separatrix can be shown to be [ 141 

Q= 
1 + h2ri, 
1 + h2rZ, 

and Q will always be greater than one in this case.) In the toroidal case there will 
often be a magnetic hill near the outside of a set of nested flux surfaces even if there 
is a well at the magnetic axis. This effect is probably due to the influence of the 
magnetic field ripple introduced by a discrete set of toroidal field coils [ 1.51 but is 
sometimes obscured by surface breakup. 

There are several intrinsically 3D characteristics of closed toroidal stellators 
(notably the coupling of toroidal and helical curvatures, the change in flux surface 
shape with the toroidal angle, the effects of coil discretization, and the possible 
existence of magnetic islands near rational values of the rotational transform) which 
cannot be modelled in this helically symmetric treatment. Although a detailed 
discussion of these effects is outside the scope of this paper it should be noted that 
the principal result of Fig. 3, that the outwards shift of the SHEILA plasma will 
stabilize Mercier and ballooning modes, will depend on to what extent a helical 
shift is dominant over a toroidal shift. Because the magnitudes of the toroidal and 
helical shifts are inversely proportional to the square of their respective (poloidal or 
helical) rotational transforms (as well as being directly proportional to their respec- 
tive aspect ratios) [6, 161, one would expect that the helically symmetric model 
would be most accurate when j%Jh. To approach this regime in the present case 
one could run the current in the extra helical winding in the same direction as the 
core current which would put the conliguration in the quiescently stable region of 
Fig. 3. There are indications from some 3D studies that a “helical” optimization of 
the toroidal heliac may be preferable for MHD equilibrium and stability as well as 
transport [ 171. 
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